Constant mean curvature $k$-noids in homogeneous manifolds
نویسندگان
چکیده
منابع مشابه
Constant k-curvature hypersurfaces in Riemannian manifolds
In [8], Rugang Ye proved the existence of a family of constant mean curvature hypersurfaces in an m+ 1-dimensional Riemannian manifold (M, g), which concentrate at a point p0 (which is required to be a nondegenerate critical point of the scalar curvature), moreover he proved that this family constitute a foliation of a neighborhood of p0. In this paper we extend this result to the other curvatu...
متن کاملComplete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملStable constant mean curvature hypersurfaces in some Riemannian manifolds
We determine all stable constant mean curvature hypersurfaces in a wide class of complete Riemannian manifolds having a foliation whose leaves are umbilical hypersurfaces. Among the consequences of this analysis we obtain all the stable constant mean curvature hypersurfaces in many nonsimply connected hyperbolic space forms. Mathematics Subject Classification (1991). Primary 53A10; Secondary 49...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2014
ISSN: 0019-2082
DOI: 10.1215/ijm/1427897176